Englewood-Hulls Water System, Inc.

Board of Directors

Phillip Johnson, President Wilber Rainey, Vice-Pres. Connie Patterson, Sec./Treas. Eugene McClain Woody Washington Graves Watkins

Darren Rice, Manager

P.O. Box 70940 Tuscaloosa, AL 35407

(205) 345-9333 fax (205) 345-9301

Hours 7:00 AM – 4:00 pm Monday – Friday

Englewood-Hulls Water System, Inc. 2022 Safe Drinking Water Report

We are pleased to present to you this year's Safe Drinking Water Report. This report shows you the high quality of water and service we deliver as your water system. Our goal is to always provide safe and dependable drinking water and we are pleased to report another successful year. We want you to understand our commitment to continually improving and protecting our water resources.

All of our water is purchased from the City of Tuscaloosa, which is treated water from Lake Tuscaloosa. This is water of the highest quality and meets all standards set by the Environmental Protection Agency and the Alabama Department of Environmental Management.

Englewood-Hulls Water System routinely monitors the quality of your water as it relates to delivery to your home. The City of Tuscaloosa provides us with reports of the quality of the water as it relates to the treatment. Public water systems must monitor over 80 contaminants. The table provided summarizes the results. Please note that a detected contaminant does not mean a health risk is present, it simply means that it was detected in the tests. Only contaminants in excess of the MCL (Maximum Contaminant Level) are considered a violation. The table shows the results for our monitoring for the period of January 1 through December 31, 2021.

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or human activity.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Englewood-Hulls Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immune-compromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/ AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers. EPA/CDC guide-lines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

If you have any questions about this report or the quality of your water, please contact Mr. Darren Rice at (205) 345-9333. We value the input of our customers and invite you to attend our regularly scheduled board meetings each second Tuesday at 6:00 PM at our office.

COPYRIGHT © 2022 McGIFFERT AND ASSOCIATES, LLC

List of Primary Drinking Water Contaminants

<u>a</u>	*** * **		Mari		ND	1	70
Contaminant	Highest Level/ (Range)	Unit of Meas-	MCL/ MRD	cis-1,2-Dichloroethylene	ND	ppb	70
	(Image)	ure	L	trans-1,2-Dichloroethylene Dichloromethane	ND ND	ppb	100 5
Bacteriological (Contaminants				ND	ppb	5
Total Coliform Bacteria	<5%	%	<5%	1,2-Dichloropropane Di(2-ethylhexyl) adipate	ND	ppb ppb	3 400
Turbidity	0.683 (0.011 - 0.683)	NTU	<0.3	Di(2-ethylhexyl) phthalates	ND	ppb	6
Fecal Coliform/ E coli	ND	n/a	0	Dinoseb	ND	ppb	7
Fecal Indicators	ND	n/a	TT	Dioxin [2,3,7,8-TCDD]	ND	ppq	30
entercocci/coliphage	ND	11/a	11	Diquat	ND	ppb	20
Radiological Con	ntaminants			Endothall	ND	ppb	100
Beta/photon emitters	N/A	mrem/	4	Endrin	ND	ppb	2
*		year		Epichlorohydrin	ND		TT
Alpha emitters	0.673±0.456	pCi/l	15	Ethylbenzene	ND	ppb	700
Combined radium	0.868±0.331	pCi/l	N/A	Ethylene dibromide	ND	ppt	50
Uranium	N/A	pCi/l	30	Glyphosate	ND	ppb	700
Inorganic Chemi	cal Contaminar	nts		HAA5	58 (43 - 75)	ppb	60
Antimony	ND	ppb	6	Heptachlor	ND	ppt	400
Arsenic	ND	ppb	10	Heptachlor epoxide	ND	ppt	200
Asbestos	NR	MFL	7	Hexachlorobenzene	ND		1
Barium	.024	ppm	2		ND	ppb	50
Beryllium	ND	ppb	4	Hexachlorocyclopentadiene		ppm	
Bromate	ND	ppb	10	Lindane	ND	ppt	200
Cadmium	ND	ppb	5	Methoxychlor	ND	ppb	40
Chloramines	ND	ppm	4	Oxamyl [Vydate]	ND	ppb	200
Chlorine	1.2 (0.2 - 1.2)	ppm	4	Pentachlorophenol	ND	ppb	1
Chlorine Dioxide	0.56 (0.05 - 0.56)	ppb	800	Picloram	ND	ppb	500
Chlorite	0.740 (0.340 - 0.740)		1	PCB's	ND	ppt	500
Chromium	ND	ppb	100	Simazine	ND	ppb	4
Copper	0.18 (ND-0.32)	ppm	AL=1.3	Styrene	ND	ppb	100
Cyanide	ND	ppb	200	Totucoblour otheriou o	ND		5
Fluoride	0.90 (0.02 -0.90)	ppm	4	Tetrachloroethylene		ppb	
Lead	ND (ND-0.0029)	ppm	AL=15	Toluene	ND	ppm	1
				Total Organic Carbon	1.9 (1.1 - 1.9)		ΤT
Mercury	ND	ppb	2	TTHM [Total trihalome- thanes]	58 (37 - 84)	ppb	80
Nitrate	0.29 (ND-0.29)	ppm	10	Toxaphene	ND	ppb	3
Nitrite	ND	ppm	1	2,4,5-TP (Silvex)	ND	ppb	50
Selenium	ND	ppb	50	1,2,4-Trichlorobenzene	ND	ppb	70
Thallium	ND	ppb	2	1,1,1-Trichloroethane	ND		200
Organic Chemic		5		1,1,2-Trichloroethane		ppb	5
Acrylamide	ND		TT		ND	ppb	
Alachlor	ND	ppb	2	Trichloroethylene	ND	ppb	5
Atrazine	ND	ppb	3	Vinyl chloride	ND	ppb	2
Benzene	ND	ppb	5	Xylenes	ND	ppm	10
Benzo(a)pyrene [PAH's]	ND	ppt	200	UCMR4 Chemicals	5		
Carbofuran	ND	ppb	40	Germanium	ND	ppb	0.3
Carbon tetrachloride	ND	ppb	5	Manganese	ND	ppb	0.4
Chlordane	ND	ppb	2	Alpha-	ND	ppb	0.01
Chlorobenzene	ND	ppb	100	hexachlorocyclohexane	ND		0.02
2,4-D	ND	ppb	70	Chloropyifos Dimethipin	ND ND	ppb ppb	0.03 0.2
Dalapon	ND	ppb	200	Ethoprop	ND	ppb ppb	0.2
Dibromochloropropane	ND	ppt	200	Oxyfluorfen	ND	ppb	0.05
o-Dichlorobenzene	ND	ppt	600				
p-Dichlorobenzene	ND		75	Anatoxin-a	ND	ppb	0.03
1,2-Dichloroethane	ND	ppb ppb	5	Cylindrospemopsin	ND	ppb	0.09
1,2-Dichloroethylene	ND	ppb	5 7	Total Microcystins	ND	ppb	0.30
1,1-Dichloroethylefie	nD	ppb	,				

List of Detected	Contaminants	in Our System
------------------	--------------	---------------

	Violation?	OEL / Range	Unit of Measure- ment	MCL/MRDL	MCLG/ MRDLG	Likely Source of Contaminant
Fluoride N	No	0.90 (0.02 - 0.90)	ppm	4	4	Water additive which promotes strong teeth; Erosion of natural deposits discharge from fertilizer and aluminum factories
Nitrate N	No	0.29 (ND - 0.29)	ppm	10	10	Fertilizer use runoff; leaching of septic tanks, sewage; erosion of natura deposits
Sulfate N	No	33.9 (12.7 - 33.9)	ppm	50	50	Erosion of natural deposits
Total N Trihalomethanes	No	58 (37 - 84)	ppb	80	0	By-product of drinking water chlorination
Haloacetic Acids N	No	58 (43 - 75)	ppb	60	0	By-product of drinking water chlorination
Chlorine (Cl2) N	No	1.2 (0.2 - 1.2)	ppm	4	4	Water additive used to control microbes
Chlorine Dioxide (Clo2) N	No	0.56 (0.05 - 0.56)	ppm	0.8	0.8	Water additive used to control microbes
Chlorite (Clo2) N	No	0.740 (0.340 - 0.740)	ppm	1	1	Water additive used to control microbes
Total N Coliform Bacteria	No	none	n/a	presence in >1 sample	0	Naturally present in the environment
Total Organic Carbon N	No	1.9 (1.1 - 1.9)	ppm	TT	n/a	Naturally present in the environment
Turbidity N	No	0.683 (0.011 - 0.683)	NTU	0.3	n/a	Soil erosion; Turbidity can interfere with disinfection
Lead N	No	ND (ND-0.0029)	ppm	0.015	0	Corrosion of household plumbing system; erosion of natural deposits
Copper N	No	0.18 (ND-0.32)	ppm	1.3 (action level)	1.3	Corrosion of household plumbing system; erosion of natural deposits; leaching from wood preservatives
Chloroform N	No	8.90 (6.70 - 8.90)	ppb	none	none	By-product of drinking water chlorination
Bromodichloromethane N	No	2.70 (<1.00 - 2.70)	ppb	none	none	By-product of drinking water chlorination
Dibromochloromethane N	No	<1.00 (<1.00 - <1.00)	ppm	none	none	By-product of drinking water chlorination
Radionuclides (Gross Alpha) N	No	0.673±0.456	pCi/L	15	0	Erosion of natural deposits

PCI/L – Not Detected, **INC** – Not Required, **INC** – Not Applicable; **ppin (0,t,q)** – parts per minion (binion, drinton, quadrinton) **pCi/L** – *Picocuries per liter*, the measure of radioactivity in water; **NTU** – Measurement of the clarity of water; **Action Level or AL** – The concentration of a contaminant that triggers treatment or other requirement a water system shall follow; **Treatment Technique or TT** – A required process intended to reduce the level of a contaminant in drinking water; **MFL** - million fibers per liter **UCMR**— Unregulated Contaminant Monitoring Rule

Treatment Technique of Our Water

Our water is purchased from the City of Tuscaloosa. Raw water for treatment is from Lake Tuscaloosa. Lake Nicol and Lake Harris are alternate sources. The City has completed a Source Water Assessment for its source. A copy may be viewed at its office. The City of Tuscaloosa operates two water treatment plants that filter water in similar processes. The raw water is mixed with aluminum sulfate and lime or poly aluminum chloride to aid coagulation, potassium permanganate to aid in the removal of iron, and manganese for taste and odor control. The water is then flocculated and settled. Next it is filtered through conventional filters or through membranes, lime is added for pH and corrosion control, chlorine is added for disinfection, fluoride is added for the prevention of tooth decay, and orthopolyphosphate is added for corrosion control. The water is then distributed to the City's customers including us.